Updates

Fine Tuning Models with Tinker on Datawizz!

Fine Tuning Models with Tinker on Datawizz!

Fine Tuning Models with Tinker on Datawizz!

Jan 14, 2026

7 min read

We're excited to announce that in addition to our built-in TRL/Unsloth based trainer, Datawizz now supports a new training option—Tinker!

❓What is Tinker

Tinker is a training API from Thinking Machines that lets you focus on your data and algorithms while it handles the messy distributed training infrastructure behind the scenes.

Why Tinker on Datawizz?

By integrating Tinker into Datawizz, you get:

  • Zero setup: No GPU cluster configuration needed—just click and train

  • Visual monitoring: Real-time loss curves and evaluation metrics in your dashboard

  • Custom evaluators: Add your own evaluation logic directly in the UI, runs automatically during training

  • Train to deploy: One-click deployment to Datawizz Serverless when training completes

📋 What's Available Now

Tinker currently supports SFT (Supervised Fine-Tuning) for:

  • Llama-3.2 8B Instruct

  • Qwen 8B

🔮 What's Coming Next

We're actively expanding our Tinker integrations. Here's what's on the roadmap:

  • Additional Language Models: Support for more popular open-source models across different sizes

  • Vision-Language Models: Enable fine-tuning of multimodal models for vision-language tasks

  • Advanced Training Methods: Reinforcement Learning (RL) techniques such as GRPO, DPO.

🚀 How to Use

Getting started with Tinker is simple:

  1. Navigate to the Model

  2. Find a Tinker-supported model (for now all 8B models)

  3. Select Tinker in the Select Trainer dropdown

  4. Enter your Tinker API Key, or leave it empty to use the Datawizz platform key

  5. When creating a new training job, Tinker will automatically retrieve the API key from your previous Tinker-based training

⚙️ Comprehensive Training Parameters

Datawizz plus Tinker provides flexible parameter configurations, giving you full control over the training process:

Basic Parameters

  • Maximum Sequence Length: Defines the maximum number of tokens in each training sample

  • Validation Split: The portion of the training data reserved for validation during training

  • Sample Size: The number of samples to use for training. If 0, all samples are used

  • Number of Epochs: The number of times the model will see the entire training data

  • Learning Rate: The rate at which the model learns from the training data

  • Number of Evaluations per Epoch: The number of evaluations to perform per epoch during training

LoRA Parameters

  • LoRA R: The rank of the LoRA matrices

  • LoRA Alpha: The alpha parameter for LoRA

  • LoRA Dropout: The dropout rate for LoRA

Advanced Options

  • Warmup Steps: The number of warmup steps during training

  • Train on Responses Only: When enabled, masks out input prompts and trains only on completions/assistant responses. According to the QLoRA paper, this can increase accuracy by 1-2 percentage points by focusing training on the model's output generation

  • Desired Batch Size: The target batch size for training. Actual batch size may be adjusted based on available GPU memory using gradient accumulation.

🎯 Custom Evaluators

Just like with our other trainers, Tinker supports custom evaluators, allowing you to evaluate model performance based on your specific needs.

📊 Result Analysis

During and after training, you can monitor your model's performance through comprehensive visualizations. The training dashboard displays the loss curve on the left and normalized evaluator metrics on the right, giving you a complete view of both the training convergence and your custom evaluation metrics in real-time.

💡 Try It Out!

Ready to start your next model training? Give Tinker a try and experience a more flexible and powerful training workflow!

Once your training is complete, deploy your fine-tuned model effortlessly with Datawizz Serverless Deployment and start using it right away!

In this post

In this post

In this post